Data Driven Mobility – Improving Mobility Systems Through Holistic Data Utilization

Individual Mobility. What does it take to bring you from A to B?

From an individual’s point of view, mobility simply is the possibility to be mobile, to go from one place to another – no matter where these places are. Typical criteria to evaluate this possibility are availability, accessibility, possible destinations, time to destination, cost, safety, comfort, reliability, sustainability etc.

To do so, you can either walk or use a means of transport – which can be any kind of vehicle from bicycle to car, from boat to drone, from e-scooter to airplane, from subway to cable car or even horses and donkeys.

Dropping the relatively rare (and in the context of this article irrelevant) case that you employ a personal chauffer, captain or pilot and are a passenger in your own vehicle, this leaves you with two options: You must either operate your own vehicle or use one rendered to you through a mobility service – such as public transport, ride hailing, bike sharing, airplanes or whatever.

Infrastructure. What you just expect to be there.

A precondition for the proper usage of these vehicles is a functioning infrastructure. Mobility infrastructure comprises a broad bandwidth of things and services, e.g.:

  • The structure the vehicle needs to operate (such as walkways, bike lanes, streets, rails, tunnels, bridges, waterways or air routes)
  • Means to enter or leave the vehicle (parking spaces, parking structures, stations, ports, airports etc.)
  • Traffic control elements (such as road markings, traffic signs, traffic lights, barriers, access control, traffic and parking surveillance etc.)
  • Energy provision (such as fuel stations, chargers or overhead lines)
  • Structures and services to maintain and repair vehicles as well as infrastructure
  • Data networks (such as mobile internet access)
  • Regulatory framework including legal requirements for vehicles and mobility services as well for their operation, tolls and taxes

In Short: To be mobile, you need your own vehicle or access to a mobility service. And in both cases, you depend on the availability of the appropriate infrastructure.

Collective Mobility. Unfortunately, other people want to be mobile, too.

Securing all these requirements alone would be tough enough, but as we all experience on a daily basis: How well one person can realize his or her mobility needs also depends strongly on the mobility patterns of all others. Jammed streets, overcrowded subways, limited availability of sharing vehicles, scarcity of parking spaces, local and global emission limits keep you from doing what you would do if you would be the only one out there. Why the heck must all others use this road, bus or service when I want to?

How well everyone in a given area can fulfill their mobility needs at the same time is what we call Collective Mobility. Securing and optimizing Collective Mobility is one of the primary regulatory tasks of cities, regions or countries and means nothing less than controlling the interplay of all vehicles being used, mobility services being rendered, and infrastructure being operated and maintained in a given mobility system. And we all know how rudimentary especially big cities handle this challenge today.

From opinions to knowledge. Big Data helps understanding.

A promising strategy to improve in this endeavor is utilizing what I call the “Internet of Mobility”: Vehicles, users, infrastructure – they all are getting more and more equipped with sensors (and hence create more and more data) and become more and more connected to the internet. There’s hardly one person on the street without a smart phone, service systems share their data and most importantly the sum of connected cars out there on the roads, which – from a data analyst’s point of view – represent nothing less than a huge, densely distributed network of powerful, mobile, and somewhat over-motorized sensor clusters constantly transmitting really big data ready to be collected and analyzed.

Such data is already available und used today, but at comparably low quantity and quality, and we are only at the beginning of holistically utilizing it. To picture what you get from conventionally connected cars compared to having digital twins: Most cars out there today leave you a little sticky note at the fridge door saying, “I drove 54 kilometers today, my tank is half full, all doors are locked, and I am generally doing fine.” However, cars with state-of-the-art connectivity have you on the phone 24/7, telling you constantly about each and every feeling and perception they have.

It is this increase and improvement of available data and especially the consolidated analysis of vehicle, user, and infrastructure generated data that allows the holistic optimization of mobility systems in the future. Here, I see mainly five main dimensions:

1. Improve Vehicle Operations

Real-time knowledge of infrastructure conditions and availability

  • facilitates parking and fueling/charging,
  • enables the early detection and even prediction of mobility-inhibiting factors such as traffic jams, potholes, slippery road surfaces or any other hazards, and
  • is the basis for any kind of autonomous driving.

2. Improve Mobility Services

Time- and location-based knowledge of user behavior and service utilization allows providers to

  • select the optimum vehicle and features for their service offers,
  • optimize both number and distribution of the vehicles used in their sharing or ride hailing schemes (including public transport), and especially
  • make mobility services as a whole more attractive (e.g., than driving your own vehicle) by optimizing the interplay between various offers (e.g., ride hailing, public transport and parking structures).

3. Improve Vehicle Condition

Real-time knowledge of all vehicles’ technical condition allows

  • detection of technical problems and thus facilitation of their solving, and
  • prediction of maintenance or repair needs and thus keeping vehicles smoothly running whilst avoiding breakdowns.

4. Improve Infrastructure Operations

Environmental data provided by connected cars allows

  • detection and prediction of infrastructure maintenance needs (e.g., broken traffic lights, worn road markers, damaged streets, bridges, or structures),
  • detection and prediction of general traffic capacity overload.

5. Improve Mobility System as a Whole

Combining and analyzing data rendered by all users, infrastructure and vehicles in a given mobility system allows the responsible authorities to

  • monitor, predict and control traffic flow and emissions,
  • decide targeted measures to improve the mobility system with regards comfort, safety and costs based on the received insights, and
  • detect and follow up on traffic violations.

As with all other forms of digital transformation, this approach comes with a twofold challenge: Firstly, the technical realization of the data utilization cycle (generate, transfer, aggregate, analyze, act, measure). Secondly, the persuasive and convincing efforts required to get all people involved supporting this change – sometimes letting go processes they are not only used to for years but have helped to establish and thus are personally attached to.

 

Comparing Apples and Apples – Objective Sustainability Assessment of Vehicles and Mobility Services

“Electric vehicles are much better than other cars because only they have truly zero emissions.”

“Completely wrong, think of all the stuff going on during battery production and especially the emissions of the power stations.”

“There isn’t any, I use 100% renewable energy only.”

“But you have to build up all the solar panels and wind turbines first and put that on the bill. In total, diesel is still much better.”

“Then you must include building all the oil wells, docks, ships, pipelines, refineries as well. That’s a lot.”

“No, I don’t – because they are already there.”

“But not forever, and this infrastructure can’t even be used for hydrogen to run fuel cell electric vehicles.”

“Then make that hydrogen from your renewable electricity.”

“That’s nonsense. You would need five times more electric energy than for a battery electric vehicle.”

“But fuel cell electric vehicles give you a much higher range.”

“If it’s about range, plug-in hybrids are still the best solution.”

“Certainly not. They need two drivetrains and energy infrastructures in parallel, and most of them are never driven in electric mode.”

“But the market proves that plug-in hybrids are what customers really want.”

 

Sounds familiar? When arguing about which mode or drivetrain may be the most sustainable and promising choice for future mobility, we see even experts comparing not only apples and oranges but all kinds of fruit and even vegetables these days …

So it is certainly worth trying to structure this and cut the sustainability elephant into clear slices. As the fictional conversation above shows: to quantify and compare costs, emissions or social impact (the three pillars of sustainability), looking solely at a vehicle’s utilization profile and powertrain technology is certainly not enough. They are off course important but only one part of the system that is to be assessed. But what are the other elements of this system? I personally recommend adding the following five aspects of the life span to the basic vehicle or service usage:

 

1. Vehicle Provision

As development determines the properties of the future vehicle, we primarily hold them accountable for “their” vehicle’s impact during utilization phase – especially its emissions. But the development phase itself has a direct impact too, even if comparably minor. Replacing hardware prototypes by virtual ones e.g. significantly reduces not only time and costs but also emissions; choosing less complex technical solutions (such as a battery electric vehicle instead of an internal combustion vehicle) reduces the required testing and validation including its side effects; digitalizing work processes allows both globalization and teleworking and thus adds up to social responsibility.

In the same way, the direct impact during marketing, sales and finance is certainly smaller than the one that is caused during this phase but actually happens later on: At the end of the day, it is salespersons who have the biggest leverage on customers’ decision which car they purchase or which mobility mode they select. In relation to that, the sustainability potential during the marketing, sales and finance phase itself, e.g. shifting to online sales and marketing, is comparably low.

While development, marketing and sales play only a minor role, vehicle production certainly fills each vehicle’s backpack with ecologic and social impact stemming from manufacturing and logistics processes. Here, the complete value chain from material mining to delivering the complete vehicle or service must be taken into account.

2. Energy Provision

Gasoline, diesel, e-fuels, hydrogen, electricity – every form of energy must be generated, stored, processed and distributed before it is available in the vehicle and converted in mechanical performance. And all these sections of the well-to-tank-process – i.e. electrical power generation, distribution and buffering on one side, oil or gas extraction or generation, refining, transport and storage on the other side – contribute to a vehicle’s sustainability balance.

In addition, accidents in power stations, oil rigs, tankers, pipelines or hydrogen filling stations as well as political and military conflicts over resources and energy dramatically demonstrate how well-to-tank processes do not only have a direct impact, but also bear especially ecologic and social risks.

3. Maintenance and Repair

Wear and tear require service, technical complexity and errors lead to problems that must be fixed, accidents cause damage that must be repaired. In any case, occurrence and impact of these measures depend largely on the vehicle concept and utilization mode: As electric drivetrains have dramatically less parts and cause less thermal and mechanical wear than combustion engines, their impact in service and maintenance is significantly lower. On the other side, vehicles used in mobility services show significantly higher wear, accident rates and even vandalism than privately owned vehicles.

4. End-of-life

At the end of their usable lifespan, vehicle components or complete cars are collected, analyzed and disassembled. Whether parts can be reused or recycled or must be scrapped significantly adds up to the quantitative sustainability indicators. E.g., remanufacturing engine parts or reusing degenerated EV batteries in battery second live applications help reducing the end-of life impact.

5. Infrastructure

Last but certainly not least: Infrastructure is often forgotten because it is considered “already there”. But a fair comparison of technical concepts must also include the economical, ecological and social impact of providing, maintaining and eventually removing the facilities, equipment and IT-systems required for all parts of both the provision and usage phase. In this sense, creating hydrogen from electricity by electrolysis might look emission free at first glance but a look at the impact of providing and maintaining the required plant shows a different picture. The impact of infrastructure has to be looked at over a longer period of time. Developing electric vehicles for the first time e.g., might require building up a new test facility for lithium-ion-batteries but may also make unnecessary the renewal of an existing test facility for diesel engines at a later point in time.

 

In a nutshell, this approach requires looking at both processes and infrastructure for every phase of the product or service life cycle. The table below gives a very basic overview of the emerging tree model. Eventually, extending the system boundaries in this way allows comparing apples and apples again.

Talkin’ Bout a Transformation …

#emobility

Whether eagerly yearned for or grudgingly conceded: By now, you have probably accepted that electric cars are inexorably on the rise. And even though you are sure that at least in some places there will still be cars with combustion engines on the road by 2050, it surely looks like EVs and Plug-in Hybrids will prevail in the cities. However, what you still find far less clear – even though you witness more and more public chargers around – is how EV drivers will be able to cope with the limited range of their vehicles in connection with the perceived scarcity of charging stations. And while at the same time some nerdish engineers reiteratively broadcast that fuel cells and hydrogen will solve this problem for ever, you still cannot get rid of this uneasy mental image of a huge crater stretching over a highway after a car crash with a poorly maintained hydrogen vehicle involved.

#mobilityservices

Then, as you read through your business strategy journals, you are told over and over that car ownership, the century old mobility pattern number one, is in rapid retreat. Urban teenagers, whose fathers were dreaming of fancy sports cars when they were their age, don’t even go for a driver’s license anymore. If train, bus or bicycle is not an option, people would not buy or lease cars but rather share a car or call a ride hailing service like Uber, the affordable and app-steered successor of what has long time been known as a taxi. But what is worrying you even more is that new digital service providers are said to take over the complete mobility business soon, with automakers being downgraded to basic hardware providers and public transport companies begging for contracts.

#autonomous

On top of that, automakers claim they will soon bring autonomous vehicles on the road. Not just something like an extra-advanced driver assistance system, but cars with neither steering wheel nor pedals but lots of extremely expensive sensors and software that must be extensively tested and meet standards initially developed for military aircraft. And while in spite of all confidence in engineering you still wonder how these cars would ever make it safely through unsecured road works or snowstorms and – even more significant – who apart from ride hailing providers would actually want to buy them, you witness the heralded date from which on these robocars should populate our cities’ streets being postponed year by year.

#digitalization

And as if all this wasn’t bad enough, some of the young guys around you, the ones wearing sneakers, a full beard and watching e-sports, tell you that data is the new gold, that big data means even more gold, and that your company should work agile, fail fast, provide something you would call completely unacceptable but they call minimum viable product, scale and ultimately indulge yourself in a so called digital transformation. All that of course independently from whether you are in automotive, mobility services, energy, public transport, insurance, law, or whatever. After thinking it over, you are left with the feeling that this is not all new but still kind of frightening. If only you would understand all these fancy IT buzzwords.

#change

If your work was related to mobility for the last couple of years, all of the above probably sounds familiar. The battle-hardened manager, now somewhat disoriented and undetermined in this overgrown jungle called mobility of the future. How do all these bits and pieces fit together? The good news is: No one has ever been brought from one place to another by software alone. But the fact that vehicles and smartphones send and receive an exponentially increasing amount of data, that they are connected to back-end servers and with each other, and that artificial intelligence can create astonishing and valuable information from this data, will not only improve vehicle and service functionalities but dramatically change the way they are developed, produced or rendered, marketed and sold – and especially how vehicles and their private or corporate customers are served after sales.

The key for survival and success is embracing change. At the end of the day, the question is neither if you should proactively engage in a digital transformation nor when you should do it (the answers are yes and now). The sole question is how – and can usually not be answered sufficiently by the people who brought your company to where it is today …

 

First published on LinkedIn on 5. August 2020